
Definition.

            (positive definitness)1.
                         2.
                                            3.

Let  be a set. A function         is called a metric if it satisfies the following three 
conditions:

A pair      , where  is a metric on  is called a metric space.

Any set  with         
     
     

- discrete metric.0.

 with             1.
Any subset of  with the same metric.2.
Uniform metric3.
Let   be any set and let                               
Define                          
Particular cases:
            Then we get   with the distance                   
    We get the space of all bounded real sequences. Notation:   .

Examples.

Will have many more examples later, as the course proceeds.

Definition.
Let     be a sequence of elements of    We say that              if          .
Definition.
Let     be a sequence of elements of    We say that     is a Cauchy sequence if
                        
Definition.
Let     be a sequence of elements of    We say that  is a limit point of     if
                   is infinite.
Equivalently:
 is a limit point of     if  there exists a subsequence    

   

Definition.
A metric space      is called complete if every Cauchy sequence converges to a limit.

Already know:  with the usual metric is a complete space.
Theorem.
    with the uniform metric is complete.
Proof.
Let     be a Cauchy sequence in      
     the sequence of real numbers      is a Cauchy sequence (check it!).
Since   is a complete space, the sequence has a limit. Denote               
Then                                                     
Since     is a Cauchy sequence,
                          
Re-write it as 
                                          
This means that       and            

Metric spaces

   Metric Spaces Page 1    



Definition.
                   

       

with the metric(will check it later!)

                
 

 

   

 

 

Additional structures.
1. It is an    dimensional vector space.
2. It has an inner product

            
 

   

So 
                   0

Let us now prove an important
Schwarz inequality.
For all  ,     

             
Proof.
Consider

                                             
    is positive quadratic function of  . Let us plug in 

               

to get 

            
      

    
  

Now we can check that      is indeed a metric.
Proof.
Positive definiteness and symmetry are obvious.
Notice that by Schwarz inequality

                                 or
                  
Taking the square root, we get
             
which implies triangle inequality. 
Lemma.(Convergence in   )
A sequence of vectors      is a Cauchy sequence iff all   cooordinate sequences are Cauchy 
sequences.
A sequence of vectors      converges to a vector   iff all  coordinate sequences converge to the 
corresponding coordinate of   
Proof.
See the book. 
Corollary. 
  is complete.

The space    
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Definition.
Let      be a metric space. An open  ball of radius    centered at  is defined as       
               
Definition.
Let      be a metric space,      Define:
                         - the interior of  .
                                                - the exterior of  .

                                                         
                                   - the boundary of   

Examples.
1. If  has discrete metric,                                  

2. If  is the real line with usual metric,    
 

 
     , then           

                             
Remarks.
                                                
2.                                       
Definition.
 is called open if          
 is called closed if         
Lemma.
 is open iff    is closed.
Proof.
 is open iff           iff                   iff     is closed. 
Lemma.
Union of any number of open sets is open.
Intersection of finitely many open sets is open.
Proof.
Let     be any collection of open sets.
If                                 , so    is open.
If         

 is a finite collection of open sets, then

                                 

Let          Then

                            . So    is open.  

Corollary.
Intersection of any number of closed sets is closed.
Union of finitely many closed sets is closed.
Proof.
We just need to use the identities
               
                 

Examples.
1.      is open for all         
Proof.
                                   by triangle inequality. 

2.              are open,      is closed.
Proof.
                   S⇒                         , so it is open as a union of open sets.

                so it is open.

Finally,                         so it is closed. 

Definition.
The closure of a set  is defined as 

Topology of metric space
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The closure of a set  is defined as 
                 
Theorem. (Alternative characterization of the closure).
         iff             ( is a limit point of  ).
Proof.
Note that          iff                    
If            then           so                      
Thus           

On the other hand, let          . Fix   then           
 

 
 Take      .

Since         
 

 
          

Yet another characterization of closure.
For         define                         
Then          iff              
Remark.
         iff  is closed.
Lemma.
       is closed. If  is closed,      then          .
Proof.
Note that 

                         so it is closed as a compliment of an open set.

If      then                so                             
Remark.
Thus we have another definition of the closed set: it is a set which contains all of its limit points.

Lemma.
Let      be a complete metric space,    .      is a complete metric space iff  is closed in   
Proof.
Assume that  is closed in   Let     be a Cauchy sequence,      Since  is complete, 
             But  is closed, so     
On the other hand, let      be complete, and let  be a limit point of    so        (in   ), 
    . Then     is convergent, so it is Cauchy, so it converges in    So    . Thus   contains all of 
its limit points, so it is closed.   

Definition.
   is called bounded, if                  
Remark (Hausdorff metric).
For a metric space       let us consider the space     of all nonempty closed bounded subset of 
 with the following metric:
               

   
              

   
            

Check that it is well-defined and a metric!
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Let      and      be two metric spaces. 
Definition.
Let    . Let          be a mapping from      to   We say that  is a limit of  at  , 
            if 

         0<                    .
Remark.  does not have to be defined at   
Example.

   
   

     
     

Characterization of the limit in terms of sequences.
             iff for every sequence               we have             

Proof.
Let               and                Fix      Then 

                            and                  
Combining these two assertions we get
            .
Assume that       when     It means that 
                                       

In particular, it means that 

                    
 

 
              

Thus               

Definition.
     is called continuous at    if                 Otherwise,  is called discontinuous

at   
Sequential definition of continuity
 is continuous at  iff for every sequence           we have                
Proof.
The same as for the limit. 
Topological definition of continuity.
 is continuous at  iff 

                              

Identity function is continuous at every point.1.
Every function from a discrete metric space is continuous at every point.2.
The following function on  

      

       

 
     

 

 
                   

is continuous at every irrational point, and discontinuous at every rational point. 

3.

      
       
     

is discontinuous at every point as a function on  , but continuous at every point as a function 
on   

4.

Let  be the usual space   with the standard metric, and  be the same space with the 
uniform metric. Then the map       is continuous as a function    and    -
check it! 

5.

Examples.

Definition.
     is called a continuous function on  if  is continuous at every point of   

Topological characterization of continuous functions.
     is a continuous function on  iff     - open, the set       is open in   

Continuous functions
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     is a continuous function on  iff     - open, the set       is open in   
Proof.

If  is continuous, and          then                 and             

                      so               Thus                  ).

On the other hand,         is an open set, so              is an open set which contains   Thus 

it also contains some ball centered at    
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Intuitively: topological generalization of finite sets.

Definition.
A metric space      is called sequentially compact if every sequence     of elements of  has a 
limit point in  . Equivalently: every sequence has a converging sequence.
Example:
A bounded closed subset of  is sequentially compact, by Heine-Borel Theorem.
Non-example:
If a subset of a metric space is not closed, this subset can not be sequentially compact: just consider 
a sequence converging to a point outside of the subset!

Definition.
Let      be a metric space.  A subset    is called  -net if                     A metric space 
     is called totally bounded if      finite   -net.
Example:
Any bounded subset of    

Any unbounded set.1.
Consider the following subset of   :                 .  is bounded, but not totally 
bounded.

2.

Proof.

Denote by   an element of  which is a sequence with  in  -th position, and  in all others. 

Note that           if    . Thus  can not have a finite    -net!   

Infinite space with discrete topology (but any finite space is totally bounded!)3.

Non-examples.

Definition.
Open cover of a metric space      is a collection           of open subsets of  , such that 

      
     The space      is called compact if every open cover contain a finite sub cover, i.e. 

if we can cover      by some collection of open sets, finitely many of them will already cover it!
Equivalently:      is compact if any collection of closed sets has non-empty intersection if any 
finite sub collection has non-empty  intersection. (For the proof, just pass to the complements).

Example:
Any finite set.

Any unbounded subset of any metric space.1.
Any incomplete space.2.

Non-examples.

Turns out, these three definitions are essentially equivalent.
Theorem.

     is compact.1.
     is sequentially compact.2.
     is complete and totally bounded.3.

The following properties of a metric space      are equivalent:

Proof.
     
Assume that      is not sequentially compact.  Let      be a sequence without limit points. Then 
all the sets            are closed, finitely many of them have non-empty intersection, and 
      

  -contradiction!
     
A limit point of a Cauchy sequence is its limit (check it!), so      is complete if it is sequentially 
compact.
Assume now that for some    there is no finite  -net. It means that one can inductively 

Compactness
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Assume now that for some    there is no finite  -net. It means that one can inductively 
construct a sequence     such that  (     )   if     This sequence does not have a limit 
point, because for any            contains onlyone member of the sequence - contradiction.

      (The most interesting part of the proof. It is helpful to compare with the proof of Heine-
Borel Theorem).
Let        be an open cover without finite sub covers. Call a set bad if no finite sub collection of 
       covers it. Thus we assumed that  itself is bad. Notice another property of bad set: if a 
finite number of other sets covers a bad set, one of them should be bad. 
Since there is a finite    -net, one can find some bad ball         . Because there is a finite    -
net, one can find some bad ball         intersecting the first one. Thus we  can inductively 
construct a sequence of bad balls         , such that                         Since 

                        is a Cauchy sequence, so, by completeness of   it has a limit       
     for some    , since        is a cover of   Since   is open,         for some   
   Now find a large   such that            , and        . It means that              so 
        is covered by one set from        , so it can not be bad - contradiction! 
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A subset of   is compact iff it is bounded and closed. (Since totally bounded is the same as 
bounded in   ).

1.

If  is compact, and      is a continuous map, then     is also compact.2.
Proof.
Let          be an open cover of       Then             is an open cover of   By 
compactness of  , it has a finite sub cover        

         
           

  Then  

   
    

      
is a finite open cover of       

Proof.
    is compact subset of  , so it is closed and bounded.
Thus             , so                   Similarly,                    
By the definition of supremum and infimum, for any    we have           
      

Let      be a continuous function. Then  is  bounded (i.e.     is a bounded set). 
Moreover, it reaches its maximum and minimum on           , such that for any    
we have                

3.

Uniform continuity.4.
Definition.
Let      and      be two metric spaces.      is called uniformly continuous if    

                                    

Remark.
It is stronger then usual continuity at every point because  here depends only on the   and 
not on the point   
Non-example.
       is continuous at every point of   but not uniformly continuous!
Theorem.
Every continuous function on a compact set is uniformly continuous.
Proof.
Let  be a continuous but not uniformly continuous function on compact space        Since  
is not uniformly continuous,

                         
 
                    

Sequence     has a subsequence     
 converging to    . Since 

     
    

   , subsequence     
 also converges to   By continuity of  at   

                
             

   But        
       

     so these two 

sequences can not have the same limit - contradiction! 

Properties of compact sets
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Definition.
A metric space      is called disconnected if there exist two non empty disjoint open sets 
           : such that      .
     is called connected otherwise.

The main property.
If      is a continuous function, then     is connected.
Proof.
If         ,       then                                 Since   is 
connected, one of the sets       and       is empty. Thus either  or  is empty. 

Any discrete compact space with more than one element is disconnected.1.

 is not connected. (           
 

           
 

 ).2.

A subset   of real line is said to have intermediate point property if 
               .

3.

Lemma 1.
Nonempty subset of the real line has intermediate point property iff it is a point, an interval, a 
ray, or the whole real line.
Lemma 2.
Subset of the real line is connected iff it has an intermediate point property.
Corollary.
Nonempty subset of the real line is connected iff it is a point, an interval, a ray, or the whole 
real line.
Proof of Lemma 1.
Clearly all the sets mentioned in the statement satisfy intermediate point property.
There are four possibilities:  is bounded both above and bellow,  is bounded above but not 
bellow,   is bounded bellow but not above,  is not bounded above or bellow. I will consider 
only the first case, others are done the same way.
Let                  If     then  is just one point.
Let     and let       Then, since    and                   
Same way,            Thus             Thus, by intermediate value 
property,     We just proved that              Thus  is an interval (open, 
closed, semi-open, or semi-closed) with endpoints  and    
Proof of Lemma 2.
First assume that  does not have the intermediate point property, i.e. we can find 
                 But then both            and 
           are not empty (       ), open, and       Thus  is 
disconnected.
Assume that   has an intermediate point property, and assume that         
       where   and  are nonempty open sets. Let         and let, say,    
(one of the two numbers has to be larger).
Since  has an intermediate value property,           This means that         
Let                    
Assume that     Then    (since    ).  Since  is open,             , so 

  
 

 
  - can not happen because  is an upper bound for   

Thus       Then    (since    ).  Since  is open,             , so there are no  
          - can not happen because        Thus we arrive to a contradiction, 
which shows that  is connected. 

Theorem (Intermediate Value Theorem).
Let      be a connected metric space, and      be a continuous function. Let 
          and         Then       for some     

Examples.

Connected metric spaces

   Metric Spaces Page 10    



          and             Then       for some     

    is a connected subset of   so it satisfies an intermediate point property. 
           Proof.
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Definition.
Let      be a metric space,       A path from  to  is a continuous function          , such 
that               
Definition.
     is called path-connected if for every two points      there exists a path from  to   
Theorem.
Every path-connected space is connected.
Remark.
The opposite is not true!
Proof.
Let        where  and  are open non-empty nonintersecting sets, and let        . Let  
be a path joining   and   Then       and       are non-empty nonintersecting open subsets of 
     , and                     This contradicts the connectedness of       

  is path-connected.1.
Any convex subset of   is path-connected.2.
    is always path-connected, as well as any of its convex subsets. 3.

Examples.

Path-connected spaces
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